There are no active ads.

Advertisement

Ford Uses Google’s Prediction API To Make Smarter Cars

by Adriana Lee | May 11, 2011May 11, 2011 6:00 am PDT

Google-Ford-car-prediction-api.jpg

Android may have been the belle of the I/O ball on the conference’s first day, but our devices and homes may not be the only things under Google‘s purview. Looks like cars are about to get in on the action.

No, you won’t be able to gyroscopically steer your bucket of bolts from your smartphone, but someday you may be able to own a vehicle that can individualize its performance to your habits. Ford is now using Google’s Prediction API to improve fuel efficiency by using data like route, time of day, and real-time traffic and location data. The key basis of this approach lies in the fact that the way people drive impacts gas mileage.

According to the press release: “Upon starting the vehicle, Google Prediction will use historical driving behavior to evaluate given the current time of day and location to develop a prediction of the most likely destination and how to optimize driving performance to and from that location.”

Or in layman’s terms, your car will get to know you and your driving patterns over time. And the more it knows, the better it will be able to predict how to optimize performance and save those precious miles per gallon. Given that gas is over $4 a gallon in my area, I consider it good news to see a car maker actively working on this. Hopefully it won’t take too long before we actually see these in showrooms.

How else could you integrate Google in the automotive industry? Tell us your most brilliant (or fantastical) ideas.

[via Engadget, source press release below]

Google-Ford-car-prediction-api2.jpg

Ford Developers Look to Use Google Prediction API to Optimize Energy Efficiency; Research Presented at Google I/O

• Ford is leveraging Google’s new Prediction API to advance ongoing research in how predictive driver behavior could help optimize vehicle control systems and improve vehicle performance attributes such as fuel or hybrid-electric efficiency

• The Google Prediction API, which provides greater computation power, information storage and external data through cloud computing, can convert historical driving data – the where and when you drive – into useful real-time predictors

• Ford envisions the capability to empower vehicles to offer drivers smart guidance based on learned behaviors and a variety of captured data

DEARBORN, Mich., May 10, 2011 – Ford researchers are harnessing the power of cloud computing, analytics and Google innovation to identify technologies that could make tomorrow’s vehicles smart enough to independently change how they perform to deliver optimal drivability and fuel efficiency.

Ford researchers are applying Google’s new Prediction API to more than two years of their own predictive driver behavior research and analysis. The Google API can convert information such as historical driving data – where a driver has traveled and at what time of day for example – into useful real-time predictions, such as where a driver is headed at the time of departure.

“The Google Prediction API allows us to utilize information that an individual driver creates over time and make that information actionable,” said Ryan McGee, technical expert, Vehicle Controls Architecture and Algorithm Design, Ford Research and Innovation. “Between Google Prediction and our own research, we are discovering ways to make information work for the driver and help deliver optimal vehicle performance.”

How it works
Ford is hoping to use these types of cloud-stored data to enable a vehicle essentially to optimize itself and perform in the best manner determined by a predicted route.

This week, Ford researchers presented a conceptual case of how the Google Prediction API could alter the performance of a plug-in hybrid electric vehicle at the 2011 Google I/O developer conference. In this theoretical situation, here’s how the technology could work:

• After a vehicle owner opts in to use the service, an encrypted driver data usage profile is built based on routes and time of travel. In essence, the system learns key information about how the driver is using the vehicle.

• Upon starting the vehicle, Google Prediction will use historical driving behavior to evaluate given the current time of day and location to develop a prediction of the most likely destination and how to optimize driving performance to and from that location.

• An on-board computer might say, “Good morning, are you going to work?” If the driver is in fact going to work, the response would be, “Yes,” and then an optimized powertrain control strategy would be created for the trip. A predicted route of travel could include an area restricted to electric-only driving. Therefore, the plug-in hybrid could program itself to optimize energy usage over the total distance of the route in order to preserve enough battery power to switch to all-electric mode when traveling within the EV-only zone.

“Once the destination is confirmed, the vehicle would have instant access to a variety of real-time information so it can optimize its performance, even against factors that the driver may not be aware of, such as an EV-only zone,” said McGee.

Because of the large amount of computing power necessary to make the predictions and optimizations, an off-board system that connects through the cloud is currently necessary.

What’s next
Knowing that driver behavior and patterns correlate to overall fuel and energy efficiency during the vehicle ownership experience, Ford researchers are committed to increasing their understanding of driver behavior behind the wheel and to developing accurate protocols to predict it.

“Anticipating the driver’s destination is just one way that Ford is investigating predicting driver behavior,” said McGee. “This information can ultimately be used to optimize vehicle performance attributes such as fuel efficiency and driveability.”

The Google Prediction API is one example of a technology that is helping Ford open doors to new predictive possibilities powered by the cloud.

“Ford already offers cloud-based services through Ford SYNC®, but those services thus far have been used for infotainment, navigation and real-time traffic purposes to empower the driver,” said Johannes Kristinsson, system architect, Vehicle Controls Architecture and Algorithm Design, Ford Research and Innovation. “This technology has the potential to empower our vehicles to anticipate the driver’s needs.”

Work is now underway to study the feasibility of incorporating other variables such as driver style and habits into the optimization process so Ford can further optimize vehicle control systems, allowing car and driver to work together to maximize energy efficiency.

Integral to this next-step work is personal information security, an issue that is of the utmost importance to Ford. “We realize that the nature of this research includes the use of personal data and location awareness, something we are committed to protecting for our customers in everything we do,” notes Kristinsson. “A key component of this project is looking at how to develop secure personal profiles that will ensure appropriate levels of protection and specific data use only by the driver and the vehicle to deliver the best driving experience.

“It’s about pure customer benefit and creating individualized and optimized experiences – the right one for each person, vehicle and situation.”


 


Adriana Lee

Adriana is the resident writer-slash-culture vulture who has written about everything from smartphones, tablets, apps, accessories, and small biz...

Advertisement

Advertisement

Advertisement